Static Value-Flow Analysis
Loading...
Searching...
No Matches
NodeIDAllocator.cpp
Go to the documentation of this file.
1//===- NodeIDAllocator.cpp -- Allocates node IDs on request ------------------------//
2
3#include <iomanip>
4#include <iostream>
5#include <queue>
6#include <cmath>
7
10#include "Util/PTAStat.h"
12#include "SVFIR/SVFValue.h"
13#include "SVFIR/SVFType.h"
14#include "Util/SVFUtil.h"
15#include "Util/Options.h"
16
17namespace SVF
18{
23
24NodeIDAllocator *NodeIDAllocator::allocator = nullptr;
25
27{
28 if (allocator == nullptr)
29 {
31 }
32
33 return allocator;
34}
35
37{
38 if (allocator != nullptr)
39 {
40 delete allocator;
41 allocator = nullptr;
42 }
43}
44
45// Initialise counts to 4 because that's how many special nodes we have.
47 : numObjects(4), numValues(4), numSymbols(4), numNodes(4), strategy(Options::NodeAllocStrat())
48{ }
49
51{
52 NodeID id = 0;
54 {
55 // We allocate objects from 0(-ish, considering the special nodes) to # of objects.
56 id = numObjects;
57 }
59 {
60 id = UINT_MAX - numObjects;
61 }
62 else if (strategy == Strategy::SEQ)
63 {
64 // Everything is sequential and intermixed.
65 id = numNodes;
66 }
67 else if (strategy == Strategy::DBUG)
68 {
69 // Non-GEPs just grab the next available ID.
70 // We may have "holes" because GEPs increment the total
71 // but allocate far away. This is not a problem because
72 // we don't care about the relative distances between nodes.
73 id = numNodes;
74 }
75 else
76 {
77 assert(false && "NodeIDAllocator::allocateObjectId: unimplemented node allocation strategy.");
78 }
79
81
82 assert(id != 0 && "NodeIDAllocator::allocateObjectId: ID not allocated");
83 return id;
84}
85
87{
88 NodeID id = 0;
90 {
91 // Nothing different to the other case.
92 id = numObjects;
93 }
95 {
96 id = UINT_MAX - numObjects;
97 }
98 else if (strategy == Strategy::SEQ)
99 {
100 // Everything is sequential and intermixed.
101 id = numNodes;
102 }
103 else if (strategy == Strategy::DBUG)
104 {
105 // For a gep id, base id is set at lower bits, and offset is set at higher bits
106 // e.g., 1100050 denotes base=50 and offset=10
107 // The offset is 10, not 11, because we add 1 to the offset to ensure that the
108 // high bits are never 0. For example, we do not want the gep id to be 50 when
109 // the base is 50 and the offset is 0.
113 )));
114 id = (offset + 1) * gepMultiplier + base;
115 assert(id > numSymbols && "NodeIDAllocator::allocateGepObjectId: GEP allocation clashing with other nodes");
116 }
117 else
118 {
119 assert(false && "NodeIDAllocator::allocateGepObjectId: unimplemented node allocation strategy");
120 }
121
123
124 assert(id != 0 && "NodeIDAllocator::allocateGepObjectId: ID not allocated");
125 return id;
126}
127
129{
130 NodeID id = 0;
132 {
133 // We allocate values from UINT_MAX to UINT_MAX - # of values.
134 // TODO: UINT_MAX does not allow for an easily changeable type
135 // of NodeID (though it is already in use elsewhere).
136 id = UINT_MAX - numValues;
137 }
139 {
140 id = numValues;
141 }
142 else if (strategy == Strategy::SEQ)
143 {
144 // Everything is sequential and intermixed.
145 id = numNodes;
146 }
147 else if (strategy == Strategy::DBUG)
148 {
149 id = numNodes;
150 }
151 else
152 {
153 assert(false && "NodeIDAllocator::allocateValueId: unimplemented node allocation strategy");
154 }
155
156 ++numValues;
157 ++numNodes;
158
159 assert(id != 0 && "NodeIDAllocator::allocateValueId: ID not allocated");
160 return id;
161}
162
168
169const std::string NodeIDAllocator::Clusterer::NumObjects = "NumObjects";
170const std::string NodeIDAllocator::Clusterer::RegioningTime = "RegioningTime";
171const std::string NodeIDAllocator::Clusterer::DistanceMatrixTime = "DistanceMatrixTime";
172const std::string NodeIDAllocator::Clusterer::FastClusterTime = "FastClusterTime";
173const std::string NodeIDAllocator::Clusterer::DendrogramTraversalTime = "DendrogramTravTime";
174const std::string NodeIDAllocator::Clusterer::EvalTime = "EvalTime";
175const std::string NodeIDAllocator::Clusterer::TotalTime = "TotalTime";
176const std::string NodeIDAllocator::Clusterer::TheoreticalNumWords = "TheoreticalWords";
177const std::string NodeIDAllocator::Clusterer::OriginalBvNumWords = "OriginalBvWords";
178const std::string NodeIDAllocator::Clusterer::OriginalSbvNumWords = "OriginalSbvWords";
179const std::string NodeIDAllocator::Clusterer::NewBvNumWords = "NewBvWords";
180const std::string NodeIDAllocator::Clusterer::NewSbvNumWords = "NewSbvWords";
181const std::string NodeIDAllocator::Clusterer::NumRegions = "NumRegions";
182const std::string NodeIDAllocator::Clusterer::NumGtIntRegions = "NumGtIntRegions";
183const std::string NodeIDAllocator::Clusterer::LargestRegion = "LargestRegion";
184const std::string NodeIDAllocator::Clusterer::BestCandidate = "BestCandidate";
185const std::string NodeIDAllocator::Clusterer::NumNonTrivialRegionObjects = "NumNonTrivObj";
186
187std::vector<NodeID> NodeIDAllocator::Clusterer::cluster(BVDataPTAImpl *pta, const std::vector<std::pair<NodeID, unsigned>> keys, std::vector<std::pair<hclust_fast_methods, std::vector<NodeID>>> &candidates, std::string evalSubtitle)
188{
189 assert(pta != nullptr && "Clusterer::cluster: given null BVDataPTAImpl");
190 assert(Options::NodeAllocStrat() == Strategy::DENSE && "Clusterer::cluster: only dense allocation clustering currently supported");
191
193 double fastClusterTime = 0.0;
194 double distanceMatrixTime = 0.0;
195 double dendrogramTraversalTime = 0.0;
196 double regioningTime = 0.0;
197 double evalTime = 0.0;
198
199 // Pair of nodes to their (minimum) distance and the number of occurrences of that distance.
200 Map<std::pair<NodeID, NodeID>, std::pair<unsigned, unsigned>> distances;
201
202 double clkStart = PTAStat::getClk(true);
203
204 // Map points-to sets to occurrences.
206
207 // Objects each object shares at least a points-to set with.
209 for (const std::pair<NodeID, unsigned> &keyOcc : keys)
210 {
211 const PointsTo &pts = pta->getPts(keyOcc.first);
212 const size_t oldSize = pointsToSets.size();
213 pointsToSets[pts] += keyOcc.second;;
214
215 // Edges in this graph have no weight or uniqueness, so we only need to
216 // do this for each points-to set once.
217 if (oldSize != pointsToSets.size())
218 {
219 NodeID firstO = !pts.empty() ? *(pts.begin()) : 0;
221 for (const NodeID o : pts)
222 {
223 if (o != firstO)
224 {
225 firstOsNeighbours.insert(o);
226 coPointeeGraph[o].insert(firstO);
227 }
228 }
229 }
230 }
231
233 overallStats[NumObjects] = std::to_string(numObjects);
234
235 size_t numRegions = 0;
236 std::vector<unsigned> objectsRegion;
238 {
240 }
241 else
242 {
243 // Just a single big region (0).
244 objectsRegion.insert(objectsRegion.end(), numObjects, 0);
245 numRegions = 1;
246 }
247
248 // Set needs to be ordered because getDistanceMatrix, in its n^2 iteration, expects
249 // sets to be ordered (we are building a condensed matrix, not a full matrix, so it
250 // matters). In getDistanceMatrix, doing regionReverseMapping for oi and oj, where
251 // oi < oj, and getting a result moi > moj gives incorrect results.
252 // In the condensed matrix, [b][a] where b >= a, is incorrect.
253 std::vector<OrderedSet<NodeID>> regionsObjects(numRegions);
254 for (NodeID o = 0; o < numObjects; ++o) regionsObjects[objectsRegion[o]].insert(o);
255
256 // Size of the return node mapping. It is potentially larger than the number of
257 // objects because we align each region to NATIVE_INT_SIZE.
258 // size_t numMappings = 0;
259
260 // Maps a region to a mapping which maps 0 to n to all objects
261 // in that region.
262 std::vector<std::vector<NodeID>> regionMappings(numRegions);
263 // The reverse: region to mapping of objects to a 0 to n from above.
264 std::vector<Map<NodeID, unsigned>> regionReverseMappings(numRegions);
265 // We can thus use 0 to n for each region to create smaller distance matrices.
266 for (unsigned region = 0; region < numRegions; ++region)
267 {
268 size_t curr = 0;
269 // With the OrderedSet above, o1 < o2 => map[o1] < map[o2].
271 {
272 // push_back here is just like p...[region][curr] = o.
273 regionMappings[region].push_back(o);
275 }
276
277 // curr is the number of objects. A region with no objects makes no sense.
278 assert(curr != 0);
279
280 // Number of bits needed for this region if we were
281 // to start assigning from 0 rounded up to the fewest needed
282 // native ints. This is added to the number of mappings since
283 // we align each region to a native int.
284 // numMappings += requiredBits(regionsObjects[region].size());
285 }
286
287 // Points-to sets which are relevant to a region, i.e., those whose elements
288 // belong to that region. Pair is for occurrences.
289 std::vector<std::vector<std::pair<const PointsTo *, unsigned>>> regionsPointsTos(numRegions);
291 {
292 const PointsTo &pt = ptocc.first;
293 const unsigned occ = ptocc.second;
294 if (pt.empty()) continue;
295 // Guaranteed that begin() != end() because of the continue above. All objects in pt
296 // will be relevant to the same region.
297 unsigned region = objectsRegion[*(pt.begin())];
298 // In our "graph", objects in the same points-to set have an edge between them,
299 // so they are all in the same connected component/region.
300 regionsPointsTos[region].push_back(std::make_pair(&pt, occ));
301 }
302
303 double clkEnd = PTAStat::getClk(true);
305 overallStats[RegioningTime] = std::to_string(regioningTime);
306 overallStats[NumRegions] = std::to_string(numRegions);
307
308 std::vector<hclust_fast_methods> methods;
310 {
311 methods.push_back(HCLUST_METHOD_SINGLE);
314 }
315 else
316 {
317 methods.push_back(Options::ClusterMethod());
318 }
319
321 {
322 std::vector<NodeID> nodeMap(numObjects, UINT_MAX);
323
324 unsigned numGtIntRegions = 0;
325 unsigned largestRegion = 0;
326 unsigned nonTrivialRegionObjects = 0;
327 unsigned allocCounter = 0;
328 for (unsigned region = 0; region < numRegions; ++region)
329 {
330 const size_t regionNumObjects = regionsObjects[region].size();
331 // Round up to next Word: ceiling of current allocation to get how
332 // many words and multiply to get the number of bits; if we're aligning.
334 {
337 }
338
340
341 // For regions with fewer than 64 objects, we can just allocate them
342 // however as they will be in the one int regardless..
344 {
346 continue;
347 }
348
351
354
356 int *dendrogram = new int[2 * (regionNumObjects - 1)];
357 double *height = new double[regionNumObjects - 1];
359 delete[] distMatrix;
360 delete[] height;
361 clkEnd = PTAStat::getClk(true);
363
365 Set<int> visited;
367 visited, regionNumObjects - 1, regionMappings[region]);
368 delete[] dendrogram;
369 clkEnd = PTAStat::getClk(true);
371 }
372
373 candidates.push_back(std::make_pair(method, nodeMap));
374
375 // Though we "update" these in the loop, they will be the same every iteration.
377 overallStats[LargestRegion] = std::to_string(largestRegion);
379 }
380
381 // Work out which of the mappings we generated looks best.
382 std::pair<hclust_fast_methods, std::vector<NodeID>> bestMapping = determineBestMapping(candidates, pointsToSets,
384
388 overallStats[EvalTime] = std::to_string(evalTime);
390
392 printStats(evalSubtitle + ": overall", overallStats);
393
394 return bestMapping.second;
395}
396
397std::vector<NodeID> NodeIDAllocator::Clusterer::getReverseNodeMapping(const std::vector<NodeID> &nodeMapping)
398{
399 // nodeMapping.size() may not be big enough because we leave some gaps, but it's a start.
400 std::vector<NodeID> reverseNodeMapping(nodeMapping.size(), UINT_MAX);
401 for (size_t i = 0; i < nodeMapping.size(); ++i)
402 {
403 const NodeID mapsTo = nodeMapping.at(i);
404 if (mapsTo >= reverseNodeMapping.size()) reverseNodeMapping.resize(mapsTo + 1, UINT_MAX);
405 reverseNodeMapping.at(mapsTo) = i;
406 }
407
408 return reverseNodeMapping;
409}
410
411size_t NodeIDAllocator::Clusterer::condensedIndex(size_t n, size_t i, size_t j)
412{
413 // From https://stackoverflow.com/a/14839010
414 return n*(n-1)/2 - (n-i)*(n-i-1)/2 + j - i - 1;
415}
416
418{
419 return requiredBits(pts.count());
420}
421
423{
424 if (n == 0) return 0;
425 // Ceiling of number of bits amongst each native integer gives needed native ints,
426 // so we then multiply again by the number of bits in each native int.
427 return ((n - 1) / NATIVE_INT_SIZE + 1) * NATIVE_INT_SIZE;
428}
429
430double *NodeIDAllocator::Clusterer::getDistanceMatrix(const std::vector<std::pair<const PointsTo *, unsigned>> pointsToSets,
431 const size_t numObjects, const Map<NodeID, unsigned> &nodeMap,
432 double &distanceMatrixTime)
433{
434 const double clkStart = PTAStat::getClk(true);
435 size_t condensedSize = (numObjects * (numObjects - 1)) / 2;
436 double *distMatrix = new double[condensedSize];
437 for (size_t i = 0; i < condensedSize; ++i) distMatrix[i] = numObjects * numObjects;
438
439 // TODO: maybe use machine epsilon?
440 // For reducing distance due to extra occurrences.
441 // Can differentiate ~9999 occurrences.
442 double occurrenceEpsilon = 0.0001;
443
444 for (const std::pair<const PointsTo *, unsigned> &ptsOcc : pointsToSets)
445 {
446 const PointsTo *pts = ptsOcc.first;
447 assert(pts != nullptr);
448 const unsigned occ = ptsOcc.second;
449
450 // Distance between each element of pts.
451 unsigned distance = requiredBits(*pts) / NATIVE_INT_SIZE;
452
453 // Use a vector so we can index into pts.
454 std::vector<NodeID> ptsVec;
455 for (const NodeID o : *pts) ptsVec.push_back(o);
456 for (size_t i = 0; i < ptsVec.size(); ++i)
457 {
458 const NodeID oi = ptsVec[i];
460 assert(moi != nodeMap.end());
461 for (size_t j = i + 1; j < ptsVec.size(); ++j)
462 {
463 const NodeID oj = ptsVec[j];
465 assert(moj != nodeMap.end());
466 double &existingDistance = distMatrix[condensedIndex(numObjects, moi->second, moj->second)];
467
468 // Subtract extra occurrenceEpsilon to make upcoming logic simpler.
469 // When existingDistance is never whole, it is always between two distances.
471
472 if (distance == std::ceil(existingDistance))
473 {
474 // We have something like distance == x, existingDistance == x - e, for some e < 1
475 // (potentially even set during this iteration).
476 // So, the new distance is an occurrence the existingDistance being tracked, it just
477 // had some reductions because of multiple occurrences.
478 // If there is not room within this distance to reduce more (increase priority),
479 // just ignore it. TODO: maybe warn?
481 {
483 }
484 else
485 {
486 // Reached minimum.
488 }
489 }
490 }
491 }
492
493 }
494
495 const double clkEnd = PTAStat::getClk(true);
497
498 return distMatrix;
499}
500
501void NodeIDAllocator::Clusterer::traverseDendrogram(std::vector<NodeID> &nodeMap, const int *dendrogram, const size_t numObjects, unsigned &allocCounter, Set<int> &visited, const int index, const std::vector<NodeID> &regionNodeMap)
502{
503 if (visited.find(index) != visited.end()) return;
504 visited.insert(index);
505
506 int left = dendrogram[index - 1];
507 if (left < 0)
508 {
509 // Reached a leaf.
510 // -1 because the items start from 1 per fastcluster (TODO).
511 nodeMap[regionNodeMap[std::abs(left) - 1]] = allocCounter;
512 ++allocCounter;
513 }
514 else
515 {
516 traverseDendrogram(nodeMap, dendrogram, numObjects, allocCounter, visited, left, regionNodeMap);
517 }
518
519 // Repeat for the right child.
520 int right = dendrogram[(numObjects - 1) + index - 1];
521 if (right < 0)
522 {
523 nodeMap[regionNodeMap[std::abs(right) - 1]] = allocCounter;
524 ++allocCounter;
525 }
526 else
527 {
528 traverseDendrogram(nodeMap, dendrogram, numObjects, allocCounter, visited, right, regionNodeMap);
529 }
530}
531
532std::vector<NodeID> NodeIDAllocator::Clusterer::regionObjects(const Map<NodeID, Set<NodeID>> &graph, size_t numObjects, size_t &numLabels)
533{
534 unsigned label = UINT_MAX;
535 std::vector<NodeID> labels(numObjects, UINT_MAX);
537 for (const Map<NodeID, Set<NodeID>>::value_type &oos : graph)
538 {
539 const NodeID o = oos.first;
540 if (labels[o] != UINT_MAX) continue;
541 std::queue<NodeID> bfsQueue;
542 bfsQueue.push(o);
543 ++label;
544 while (!bfsQueue.empty())
545 {
546 const NodeID o = bfsQueue.front();
547 bfsQueue.pop();
548 if (labels[o] != UINT_MAX)
549 {
550 assert(labels[o] == label);
551 continue;
552 }
553
554 labels[o] = label;
555 Map<NodeID, Set<NodeID>>::const_iterator neighboursIt = graph.find(o);
556 assert(neighboursIt != graph.end());
557 for (const NodeID neighbour : neighboursIt->second) bfsQueue.push(neighbour);
558 }
559 }
560
561 // The remaining objects have no relation with others: they get their own label.
562 for (size_t o = 0; o < numObjects; ++o)
563 {
564 if (labels[o] == UINT_MAX) labels[o] = ++label;
565 }
566
567 numLabels = label + 1;
568
569 return labels;
570}
571
573{
577 u64_t totalNewSbv = 0;
578 u64_t totalNewBv = 0;
579
581 {
582 const PointsTo &pts = ptsOcc.first;
583 const unsigned occ = ptsOcc.second;
584 if (pts.count() == 0) continue;
585
586 u64_t theoretical = requiredBits(pts) / NATIVE_INT_SIZE;
588
589 // Check number of words for original SBV.
590 Set<unsigned> words;
591 // TODO: nasty hardcoding.
592 for (const NodeID o : pts) words.insert(o / 128);
593 u64_t originalSbv = words.size() * 2;
595
596 // Check number of words for original BV.
597 NodeID min = UINT_MAX;
598 NodeID max = 0;
599 for (NodeID o : pts)
600 {
601 if (o < min) min = o;
602 if (o > max) max = o;
603 }
604 words.clear();
605 for (NodeID b = min; b <= max; ++b)
606 {
607 words.insert(b / NATIVE_INT_SIZE);
608 }
609 u64_t originalBv = words.size();
611
612 // Check number of words for new SBV.
613 words.clear();
614 // TODO: nasty hardcoding.
615 for (const NodeID o : pts) words.insert(nodeMap[o] / 128);
616 u64_t newSbv = words.size() * 2;
617 if (accountForOcc) newSbv *= occ;
618
619 // Check number of words for new BV.
620 min = UINT_MAX;
621 max = 0;
622 for (const NodeID o : pts)
623 {
624 const NodeID mappedO = nodeMap[o];
625 if (mappedO < min) min = mappedO;
626 if (mappedO > max) max = mappedO;
627 }
628
629 words.clear();
630 // No nodeMap[b] because min and max and from nodeMap.
631 for (NodeID b = min; b <= max; ++b) words.insert(b / NATIVE_INT_SIZE);
632 u64_t newBv = words.size();
633 if (accountForOcc) newBv *= occ;
634
639 totalNewBv += newBv;
640 }
641
642 stats[TheoreticalNumWords] = std::to_string(totalTheoretical);
643 stats[OriginalSbvNumWords] = std::to_string(totalOriginalSbv);
644 stats[OriginalBvNumWords] = std::to_string(totalOriginalBv);
645 stats[NewSbvNumWords] = std::to_string(totalNewSbv);
646 stats[NewBvNumWords] = std::to_string(totalNewBv);
647}
648
649// Work out which of the mappings we generated looks best.
650std::pair<hclust_fast_methods, std::vector<NodeID>> NodeIDAllocator::Clusterer::determineBestMapping(
651 const std::vector<std::pair<hclust_fast_methods, std::vector<NodeID>>> &candidates,
652 Map<PointsTo, unsigned> pointsToSets, const std::string &evalSubtitle, double &evalTime)
653{
654 // In case we're not comparing anything, set to first "candidate".
655 std::pair<hclust_fast_methods, std::vector<NodeID>> bestMapping = candidates[0];
656 // Number of bits required for the best candidate.
657 size_t bestWords = std::numeric_limits<size_t>::max();
659 {
660 for (const std::pair<hclust_fast_methods, std::vector<NodeID>> &candidate : candidates)
661 {
665 std::vector<NodeID> candidateMapping = candidate.second;
666
667 // TODO: parameterise final arg.
668 const double clkStart = PTAStat::getClk(true);
670 const double clkEnd = PTAStat::getClk(true);
672 printStats(evalSubtitle + ": candidate " + candidateMethodName, candidateStats);
673
674 size_t candidateWords = 0;
675 if (Options::PtType() == PointsTo::SBV) candidateWords = std::stoull(candidateStats[NewSbvNumWords]);
676 else if (Options::PtType() == PointsTo::CBV) candidateWords = std::stoull(candidateStats[NewBvNumWords]);
677 else assert(false && "Clusterer::cluster: unsupported BV type for clustering.");
678
680 {
683 }
684 }
685 }
686
687 return bestMapping;
688}
689
691{
692 // When not in order, it is too hard to compare original/new SBV/BV words, so this array forces an order.
693 static const std::string statKeys[] =
694 {
695 NumObjects, TheoreticalNumWords, OriginalSbvNumWords, OriginalBvNumWords,
696 NewSbvNumWords, NewBvNumWords, NumRegions, NumGtIntRegions,
697 NumNonTrivialRegionObjects, LargestRegion, RegioningTime,
698 DistanceMatrixTime, FastClusterTime, DendrogramTraversalTime,
699 EvalTime, TotalTime, BestCandidate
700 };
701
702 const unsigned fieldWidth = 20;
703 SVFUtil::outs().flags(std::ios::left);
704 SVFUtil::outs() << "****Clusterer Statistics: " << subtitle << "****\n";
705 for (const std::string& statKey : statKeys)
706 {
708 if (stat != stats.end())
709 {
710 SVFUtil::outs() << std::setw(fieldWidth) << statKey << " " << stat->second << "\n";
711 }
712 }
713
714 SVFUtil::outs().flush();
715}
716
717}; // namespace SVF.
#define TIMEINTERVAL
Definition SVFType.h:512
#define NATIVE_INT_SIZE
Size of native integer that we'll use for bit vectors, in bits.
Definition SVFType.h:516
buffer offset
Definition cJSON.cpp:1113
cJSON * n
Definition cJSON.cpp:2558
const cJSON *const b
Definition cJSON.h:255
int index
Definition cJSON.h:170
const PointsTo & getPts(NodeID id) override
static const std::string DistanceMatrixTime
static std::vector< NodeID > cluster(BVDataPTAImpl *pta, const std::vector< std::pair< NodeID, unsigned > > keys, std::vector< std::pair< hclust_fast_methods, std::vector< NodeID > > > &candidates, std::string evalSubtitle="")
static const std::string LargestRegion
static const std::string NumNonTrivialRegionObjects
static const std::string EvalTime
static std::vector< unsigned > regionObjects(const Map< NodeID, Set< NodeID > > &graph, size_t numObjects, size_t &numLabels)
static const std::string TheoreticalNumWords
static std::pair< hclust_fast_methods, std::vector< NodeID > > determineBestMapping(const std::vector< std::pair< hclust_fast_methods, std::vector< NodeID > > > &candidates, Map< PointsTo, unsigned > pointsToSets, const std::string &evalSubtitle, double &evalTime)
static const std::string BestCandidate
static std::vector< NodeID > getReverseNodeMapping(const std::vector< NodeID > &nodeMapping)
static const std::string OriginalSbvNumWords
static const std::string DendrogramTraversalTime
static const std::string NewSbvNumWords
static double * getDistanceMatrix(const std::vector< std::pair< const PointsTo *, unsigned > > pointsToSets, const size_t numObjects, const Map< NodeID, unsigned > &nodeMap, double &distanceMatrixTime)
static unsigned requiredBits(const PointsTo &pts)
Returns the minimum number of bits required to represent pts in a perfect world.
static void traverseDendrogram(std::vector< NodeID > &nodeMap, const int *dendrogram, const size_t numObjects, unsigned &allocCounter, Set< int > &visited, const int index, const std::vector< NodeID > &regionNodeMap)
static void printStats(std::string title, Map< std::string, std::string > &stats)
static const std::string NumRegions
static size_t condensedIndex(size_t n, size_t i, size_t j)
static void evaluate(const std::vector< NodeID > &nodeMap, const Map< PointsTo, unsigned > pointsToSets, Map< std::string, std::string > &stats, bool accountForOcc)
Fills in *NumWords statistics in stats..
static const std::string RegioningTime
static const std::string NumGtIntRegions
static const std::string FastClusterTime
static const std::string OriginalBvNumWords
static const std::string NewBvNumWords
static const std::string NumObjects
static const std::string TotalTime
NodeID numValues
Number of values allocated, including specials.
static const NodeID nullPointerId
NodeID allocateValueId(void)
Allocate a value ID as determined by the strategy.
static NodeIDAllocator * get(void)
Return (singleton) allocator.
NodeID numSymbols
Number of explicit symbols allocated (e.g., llvm::Values), including specials.
enum Strategy strategy
Strategy to allocate with.
static const NodeID blackHolePointerId
static NodeIDAllocator * allocator
Single allocator.
static const NodeID constantObjectId
NodeID allocateObjectId(void)
Allocate an object ID as determined by the strategy.
static const NodeID blackHoleObjectId
@ SEQ
Allocate objects objects and values sequentially, intermixed.
NodeID numNodes
Total number of objects and values allocated.
NodeID endSymbolAllocation(void)
Notify the allocator that all symbols have had IDs allocated.
NodeID allocateGepObjectId(NodeID base, u32_t offset, u32_t maxFieldLimit)
NodeIDAllocator(void)
Builds a node ID allocator with the strategy specified on the command line.
static void unset(void)
Deletes the (singleton) allocator.
Carries around command line options.
Definition Options.h:20
static const OptionMap< SVF::NodeIDAllocator::Strategy > NodeAllocStrat
Definition Options.h:35
static const OptionMap< PointsTo::Type > PtType
Type of points-to set to use for all analyses.
Definition Options.h:50
static const Option< bool > RegionAlign
Align identifiers in each region to a word.
Definition Options.h:62
static const Option< bool > RegionedClustering
Cluster partitions separately.
Definition Options.h:59
static const OptionMap< enum hclust_fast_methods > ClusterMethod
Definition Options.h:56
bool empty() const
Returns true if set is empty.
Definition PointsTo.cpp:98
void clear()
Empty the set.
Definition PointsTo.cpp:123
const_iterator begin() const
Definition PointsTo.h:128
static double getClk(bool mark=false)
Definition SVFStat.cpp:48
hclust_fast_methods
Definition fastcluster.h:66
@ HCLUST_METHOD_AVERAGE
Definition fastcluster.h:72
@ HCLUST_METHOD_COMPLETE
Definition fastcluster.h:70
@ HCLUST_METHOD_SVF_BEST
Definition fastcluster.h:76
@ HCLUST_METHOD_SINGLE
Definition fastcluster.h:68
int hclust_fast(int n, double *distmat, int method, int *merge, double *height)
std::string hclustMethodToString(hclust_fast_methods method)
Returns a string representation of a hclust method.
Definition SVFUtil.cpp:261
std::ostream & outs()
Overwrite llvm::outs()
Definition SVFUtil.h:50
for isBitcode
Definition BasicTypes.h:68
unsigned long long u64_t
Definition GeneralType.h:48
u32_t NodeID
Definition GeneralType.h:55
std::unordered_map< Key, Value, Hash, KeyEqual, Allocator > Map
llvm::IRBuilder IRBuilder
Definition BasicTypes.h:74
unsigned u32_t
Definition GeneralType.h:46